nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.46 47-55
基于改进CPO算法的茶叶采摘机械臂路径优化研究
基金项目(Foundation): 中国高校产学研创新基金—新一代信息技术创新项目课题(2022IT182); 湖南省教育科学规划2024年度课题(XJK24BZY037)
邮箱(Email): tanlixin@mail.hniu.cn;
DOI:
摘要:

为推动名优茶叶采摘自动化,茶叶采摘机械臂快速、高质量路径规划是实现高效采摘的关键。针对传统群智能优化算法在茶园复杂环境及约束条件下存在的路径质量差、算法耗时长及规划不稳定等问题。提出一种改进豪猪优化器(Crested Porcupine Optimizer,CPO)的机械臂路径规划方法。通过引入动态种群收缩策略,在迭代过程中缩减种群规模,减少计算成本,使用末位淘汰机制及对算法结构改良提升全局寻优能力,增加个体多样性,并引入动态调整因子λt改进第一防御策略,平衡算法在不同阶段的探索与优化比例。通过Lindenmayer系统及UR5机械臂构建茶叶采摘仿真场景,进行仿真路径规划实验。在10个不同环境中,改进CPO算法相比原算法,平均计算时间减少4.7%,平均路径长度缩短0.78%;与灰狼优化(Grey Wolf Optimizer,GWO)、蜣螂优化(Dung Beetle Optimizer,DBO)、快速扩展随机树(Rapidly-exploring Random Trees,RRT)等算法相比,平均耗时相较GWO、DBO分别下降25%、24%,路径长度相较RRT算法减少23%、平均规划成功率高28%。改进CPO算法相较其他算法耗时更短,同时具有更好的路径质量及规划成功率,验证了其在茶叶采摘机械臂路径规划问题上的实用价值。

Abstract:

To promote the automation of famous tea picking,fast and high-quality path planning of tea picking robotic arms is the key to achieving efficient picking.Traditional swarm intelligence optimization algorithms face challenges in complex environments and constrained conditions,including poor path quality,long algorithm time,and unstable planning.An improved Crested Porcupine Optimizer (CPO) robotic arm path planning method is proposed.By introducing a dynamic population contraction strategy,the population size is reduced during the iterative process,reducing computational costs.Use the last-out mechanism and improve the algorithm structure to enhance the global optimization ability and increase individual diversity.And introduce a dynamic adjustment factor to improve the first defense strategy and balance the exploration and optimization ratio of the algorithm in different stages.Using the Lindenmayer system (L-System) and the UR5 robotic arm,a tea picking simulation scenario was constructed to conduct a simulation path planning experiment.In 10 different environments,the improved CPO algorithm reduces the average computation time by 4.7% and shortens the average path length by 0.78% compared to the original algorithm.Compared with Grey Wolf Optimizer (GWO),Dung Beetle Optimizer (DBO),Rapidly-exploring Random Trees (RRT) and other algorithms,the average time consumption is reduced by 25% and 24% respectively compared with GWO and DBO,the path length is reduced by 23% compared with RRT algorithm,and the average planning success rate is increased by 28%.Compared with other algorithms,the improved CPO algorithm is more time-efficient,with better path quality and planning success rate.The practical value of the method in path planning for tea picking robotic arms has been verified.

参考文献

[1]梅宇,张朔.2022年中国茶叶生产与内销形势分析[J].中国茶叶,2023(4):25-30.

[2]杨旭海,周文皓,李育峰,等.采摘机械臂路径规划算法研究现状综述[J].中国农机化学报,2023(5):161-169.

[3]LEI YE,JIN LI,PU LI.Improving path planning for mobile robots in complex orchard environments:the continuous bidirectional Quick-RRT algorithm[J].Frontiers in Plant Science,2024,15:1337638.

[4]WANG YAN,JIANG WENSONG,LUO ZAI,et al.Path planning of a 6-DOF measuring robot with a direction guidance RRT method[J].Expert Systems with Applications,2024,238(PD):122057.

[5]GANESAN SIVASANKAR,NATARAIAN SENTHIL KUMAR.A novel directional sampling-based path planning algorithm for ambient intelligence navigation scheme in autonomous mobile robots[J].Journal of Ambient Intelligence and Smart Environments,2023,15(3):269-284.

[6]王杲,库祥臣,吴鸿宇,等.基于改进APF-RRT的6R机械臂避障路径规划[J].机床与液压,2024(11):27-32.

[7]崔永杰,王寅初,何智,等.基于改进RRT算法的猕猴桃采摘机器人全局路径规划[J].农业机械学报,2022(6):151-158.

[8]田玉冬,徐传征.结合人工鱼群和RRT算法的机械臂路径规划[J/OL].机械科学与技术,[2025-01-08].https://doi.org/10.13433/j.cnki.1003-8728.20240038.

[9]田悦,袁德成.基于多策略改进狼群算法的机械臂路径规划[J].工业仪表与自动化装置,2023(5):76-82,97.

[10]FATIN H.AJEIL,IBRAHEEM KASIM IBRAHEEM,MOUAYAD A.SAHIB,et al.Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm[J].Applied Soft Computing Journal,2020,89:106076.

[11]ABDEL-BASSET M,MOHAMED R,ABOUHAWWASH M.Crested Porcupine Optimizer:A new nature-inspired metaheuristic[J].Knowledge-Based Systems,2024,284:111257.

[12]HAMON L,RICHARD E,RICHARD P,et al.RTIL-system:a Real-Time Interactive L-system for 3D interactions with virtual plants[J].Virtual Reality,2012,16(2):151-160.

[13]刘晓平,翁晓毅,陈皓,等.运用改进的八叉树算法实现精确碰撞检测[J].计算机辅助设计与图形学学报,2005(12):2631-2635.

[14]熊心一,姚宇.基于混合八叉树的动态对象碰撞检测算法[J].计算机应用,2019(S1):96-99.

[15]DUANKHAN P,SUNAT K,CHIEWCHANWATTANA S,et al.The Differentiated Creative Search (DCS):leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems[J].Expert Systems with Applications,2024,252:123734.

[16]SEYEDAIL MIRJALILI,SEYEDE MOHAMMD MIRJALILI,ANDREW LEWIS.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.

[17]XUE JIANKAI,SHEN BO.Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2023(79):7305-7336.

基本信息:

DOI:

中图分类号:S225.99;TP241;TP18

引用信息:

[1]王文胤,谭立新,宋敏等.基于改进CPO算法的茶叶采摘机械臂路径优化研究[J].现代农业装备,2025,46(01):47-55.

基金信息:

中国高校产学研创新基金—新一代信息技术创新项目课题(2022IT182); 湖南省教育科学规划2024年度课题(XJK24BZY037)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文